403 research outputs found

    Two new species of the genus Allochthonius Chamberlin from China (Pseudoscorpiones: Pseudotyrannochthoniidae)

    Get PDF
    Two new pseudoscorpion species of Allochthonius are described: Allochthonius (Allochthonius) liaoningensis sp. n. and A. (Urochthonius) brevitus sp. n. The latter represents species of the subgenus Allochthonius (Urochthonius) found in China for the first time

    Solid Ink Laser Patterning for High-Resolution Information Labels with Supervised Learning Readout

    Get PDF
    Tagging, tracking, or validation of products are often facilitated by inkjet-printed optical information labels. However, this requires thorough substrate pretreatment, ink optimization, and often lacks in printing precision/resolution. Herein, a printing method based on laser-driven deposition of solid polymer ink that allows for printing on various substrates without pretreatment is demonstrated. Since the deposition process has a precision of <1 µm, it can introduce the concept of sub-positions with overlapping spots. This enables high-resolution fluorescent labels with comparable spot-to-spot distance of down to 15 µm (444,444 spots cm−2) and rapid machine learning-supported readout based on low-resolution fluorescence imaging. Furthermore, the defined thickness of the printed polymer ink spots can be used to fabricate multi-channel information labels. Additional information can be stored in different fluorescence channels or in a hidden topography channel of the label that is independent of the fluorescence

    Editorial: Rock physics modeling and well-log practice for unconventional reservoirs

    Get PDF
    Unconventional resources with commercial interest in the world mainly include heavy oils, shales, coalbed methane and tight gas sands. The production and development of these resources have changed the supply pattern of global energy. Quantitative interpretation of geophysical data in the exploration, well logging and engineering development of the unconventional resources requires a comprehensive understanding of the physical properties of rocks and their relationships. The research of rock physics provides an interdisciplinary treatment of physical properties, whether it is highly related to geological, geophysical and geomechanical methodologies. The development of new rock physics methods is essential when integrating core, well-log, seismic data to improve the accuracy of formation evaluation and reservoir characterization. In this Research Topic, it includes 10 articles addressing a variety of rock physics studies on unconventional resources, highlighting fundamental theories, laboratory work and well-log interpretation. . .

    Nanolayer Laser Absorber for Femtoliter Chemistry in Polymer Reactors

    Get PDF
    Laser-induced forward transfer (LIFT) has the potential to be an alternative approach to atomic force microscopy based scanning probe lithography techniques, which have limitations in high-speed and large-scale patterning. However, traditional donor slides limit the resolution and chemical flexibility of LIFT. Here, a hematite nanolayer absorber for donor slides to achieve high-resolution transfers down to sub-femtoliters is proposed. Being wettable by both aqueous and organic solvents, this new donor significantly increases the chemical scope for the LIFT process. For parallel amino acid coupling reactions, the patterning resolution can now be increased more than five times (>111 000 spots cm−2 for hematite donor vs 20 000 spots cm−2 for standard polyimide donor) with even faster scanning (2 vs 6 ms per spot). Due to the increased chemical flexibility, other types of reactions inside ultrasmall polymer reactors: copper (I) catalyzed click chemistry and laser-driven oxidation of a tetrahydroisoquinoline derivative, suggesting the potential of LIFT for both deposition of chemicals, and laser-driven photochemical synthesis in femtoliters within milliseconds can be explored. Since the hematite shows no damage after typical laser transfer, donors can be regenerated by heat treatment. These findings will transform the LIFT process into an automatable, precise, and highly efficient technology for high-throughput femtoliter chemistry

    An all-in-one nanoprinting approach for the synthesis of a nanofilm library for unclonable anti-counterfeiting applications

    Get PDF
    In addition to causing trillion-dollar economic losses every year, counterfeiting threatens human health, social equity and national security. Current materials for anti-counterfeiting labelling typically contain toxic inorganic quantum dots and the techniques to produce unclonable patterns require tedious fabrication or complex readout methods. Here we present a nanoprinting-assisted flash synthesis approach that generates fluorescent nanofilms with physical unclonable function micropatterns in milliseconds. This all-in-one approach yields quenching-resistant carbon dots in solid films, directly from simple monosaccharides. Moreover, we establish a nanofilm library comprising 1,920 experiments, offering conditions for various optical properties and microstructures. We produce 100 individual physical unclonable function patterns exhibiting near-ideal bit uniformity (0.492 ± 0.018), high uniqueness (0.498 ± 0.021) and excellent reliability (>93%). These unclonable patterns can be quickly and independently read out by fluorescence and topography scanning, greatly improving their security. An open-source deep-learning model guarantees precise authentication, even if patterns are challenged with different resolutions or devices

    Multi‐Channel Lanthanide Nanocomposites for Customized Synergistic Treatment of Orthotopic Multi‐Tumor Cases

    Get PDF
    Simultaneous photothermal ablation of multiple tumors is limited by unpredictable photo-induced apoptosis, caused by individual intratumoral differences. Here, a multi-channel lanthanide nanocomposite was used to achieve tailored synergistic treatment of multiple subcutaneous orthotopic tumors under non-uniform whole-body infrared irradiation prescription. The nanocomposite reduces intratumoral glutathione by simultaneously activating the fluorescence and photothermal channels. The fluorescence provides individual information on different tumors, allowing customized prescriptions to be made. This enables optimal induction of hyperthermia and dosage of chemo drugs, to ensure treatment efficacy, while avoiding overtherapy. With an accessional therapeutic laser system, customized synergistic treatment of subcutaneous orthotopic cancer cases with multiple tumors is possible with both high efficacy and minimized side effects
    corecore